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NONLINEAR ANALYSIS OF A MAGNICON OUTPUT CAVITY

I. Introduction

The generation of the microwaves required to power future high-gradient radio-

frequency (rf) accelerators will require the use of efficient and powerful sources that

operate at higher frequencies than conventional S-band klystrons. Possible rf sources

to meet this need include the relativistic klystron, the gyroklystron and the magni-

con. In addition, there are other potential applications for such sources, including

microwave power beaming. This paper presents an analysis of the electron-wave

interaction in the output cavity of a magnicon. The magnicon 1 - is an advanced

version of the gyrocons and employs a scanning beam that is obtained by the pas-

sage of a magnetized pencil beam from the electron gun through a deflection system.

The deflection system consists of an input cavity and one or more passive cavities,

separated by drift tubes, with the entire system immersed in an axial magnetic

field, Bo. The cavities support a rotating TM110 mode with a frequency that is

- 1/2 the gyrofrequency, w,, = elBoh/mc. Here, e is the charge and m is the mass

of an electron, 7 is the relativistic factor, and c is the vacuum speed of light. The

purpose of the deflection system is to spin the beam to high transverse momentum;

i.e., a - vJ./jv > 1. Here, vu and v, are the velocity components transverse to and

along the z axis. After passing through the deflection system, the beam transverse

momentum is used to drive a gyrotron-like interaction in the output cavity. The

entry point of the electrons in the output cavity rotates in space about the cavity

axis at the drive frequency. In the frequency-doubling version, the output cavity

supports a rotating TM2 10 mode with frequency w ; w,. Each electron arrives in

Manuscript approved February 19, 1993.
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the output cavity ideally gyrophased for optimum energy transfer to the rf field.

Since the electrons entering the output cavity are almost completely phase-bunched

and rotate in synchronism with the TM210 wave, the transverse efficiency may be

extremely high.

At the Naval Research Laboratory (NRL) a program to develop a high-gain,

second-harmonic magnicon in the X-band regime is presently under way.3 The design

calls for the generation of 50 MW at 11.4 GHz and 50% efficiency, using a 200 A,

1/2 MV electron beam produced by a cold-cathode diode on the NRL Long-Pulse

Accelerator Facility.7

This paper presents an investigation of the output cavity of a magnicon and is a

follow-up of our earlier analysis of the deflection system." The equations of motion

for the electrons and the wave equation for the rf field are derived. The derivation

closely follows the analysis of the quasi-optical gyrotron presented in Refs. 8-10. In

particular, it is assumed that the build-up of the rf field in the output cavity takes

place on a time scale that is long compared to the transit time of electrons through

the cavity. Scaled variables are defined and the equations are analyzed in detail

to examine the efficiency of the device. Results from time-dependent and steady-

state simulations of the output cavity are presented. Point design parameters for a

magnicon operating in X-band are given. A major simplification in this analysis is

the use of the ideal TM210 mode structure in the output cavity, neglecting the effects

of field leakage and fringing fields in the vicinity of the beam tunnel. Additionally,

the effects of space charge are neglected in the analysis.
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II. Formulation

The vector potential of the electromagnetic field in the cavity is assumed to be a

superposition of discrete Fourier harmonics

1A,(r, = .AP) exp(-ipt) + c.c., (1)

where At'), the amplitude of the pth Fourier component, may be decomposed in

terms of the cavity modes as follows

A(P)= r_. P(t)a.C,,ra) cos(17rzlL)exp(iný), (2)

where r, q5, z denote the cylindrical coordinates, Ad is a complex-valued amplitude

which is a slowly-varying function of time, t, J. is the ordinary Bessel function of

the first kind of order n, p.,. is the mth zero of J., a is the radius and L is the

length of the cavity and c.c. stands for complex conjugate. Figure 1 shows a cross-

sectional view of the electric and magnetic field lines. The whole structure rotates

azimuthally at the drive frequency, w/2. The vector potential in Eq. (1) is a solution

of the wave equation in the form

1 82A,, 4rrI / o=2
3 -~~ -- d to

x dd2 r 0oJ d3po f(r±o, Po,t o)if(r±o, Pot t, to)bfr - r(r.Lo, Pot t, to)], (3)

where I is the beam current and a tilde over a variable indicates that the variable

is a function of t and the transverse coordinates r. 0 and momenta Po at the entry

3



time to into the cavity. The right hand side of Eq. (3) is obtained by writing the

electron distribution function in the form

f(r, p, t) -e o dto

x Jd2r-LoJd3pof(r±o,po, to)f[r- i(r.0o,po,t,to)16[p - pj(ro,pot,to)],

where f(r±o, Po, to) is the distribution function at the entrance to the cavity. The

distribution function f(r, p, t) is, by construction, a solution of the Vlasov equation.

Herein, the interest is in the excitation of the TM210 mode, represented by the

Fourier amplitude A(, with no z dependence within the cavity. Making use of the

Fourier-Bessel expansion of 6(r - f(t, to)l and substituting Eqs. (1) and (2) into Eq.

(3), one obtains

2ipwd +(ew"_ L)] (2PIO 4/c dZ
~exp(-ipwt) iwd 1AJI 4/f d

C2 C2 .9 d+i jaJ 1(pn)12

x J dto. 6(z - i)J 2(pPn/a) exp(-2i#), (4)

where the cutoff wavenumber is defined by k, = p2L/a = w/c. In writing Eq.

(4), the right-hand side has been simplified by assuming that there is no spread

in the transverse coordinates or momenta of the electrons as they enter the cavity.

The cavity radius a is determined by the boundary condition J 2(p2l) = 0. Since

P2l = 5.136, the radius of the output cavity is 2.145 cm for a frequency of 11.42

GHz.

Assuming that the Fourier amplitude A(P) varies slowly on the time scale 21r/w,

and performing the integration (27r/w)- 1 fo2'/' dt exp(iwt) on Eq. (4), the wave
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equation for a) takes the form

2iw d +(2 )]cEo(t) _ 41/c Ldz-T w-. T2 k. - i , [aJ,(p•,)]2 10L

x f2ww do Jzp2{7•[Tr(to,z),to]/a)}exp{-2iý[r(to, z),to + iwr(to,z)}, (5)

where Eo(t) = wAl),/c is the slowly varying complex-valued electric field amplitude

and T(to, z) to+ o-f dz'/v,(to, z') is the time measured along the electron orbit. As

discussed in Ref. 11, in going from Eq. (4) to Eq. (5), the order of integration has

been interchanged according to the prescription jj'l" dt fl.o dto -- fo1 " dio fLo di.

Next, it is necessary to write down the equations of motion of the electrons. In

terms of the independent variable z, these equations take the form

dv. ME1. ,, _(ejBo vy jejly
dW =7m -tM \ Vc v= 1 (6)

dv, 1eJE. (1dB. lelBoum'\d- = mC 71 P V, (7)

dv,. .e.E' (C2  v (IeIBvv. IleB.,,,,8
dz 7mc2 kV. zJ7mc V, -rmc V,' 8

where E, = -(/,c)D•tA./ is the rf electric field, (B.,B,) = Vx(Ate.) is the rf

magnetic field and e, is a unit vector along the z axis. Since the electrons interact

with fields that are independent of the z coordinate, it follows that the canonical

momentum along the z axis is conserved; i.e.,

P. =E--mv-•,- lelt = const. (9)c



To proceed, it is convenient to transform to guiding center variables in the guide

field Bo, defined by

VC -- L •COS 4ý

VY v±L sin ,§

X X+psint,

Y = Y-pcost',

where $ is the gyroangle, p = v±/w-l is the gyroradius, w, = IeIBo/ 7 mc is the

relativistic gyrofrequency, and (X, Y) is the guiding-center coordinate in the (z, y)-

plane. The equations of motion of the guiding-center are

dX B. (10)
dW Bo'

dY By
dz Bo

The equations of motion for the other variables may be simplified by approximating

the Bessel function as follows:

J2(pnjr/a)exp(-2io) 1 "-2

x [R exp(--2iO) - p2exp(-2it) + 2ipRexp[-i(' + O)II,

where R exp(i9) = X + iY defines the guiding center radius, R, and the guiding

center angle, E. The equations of motion of the electrons along the cavity may now

be written in the form

0- - IROUt_ [R 2 sin 7k - 2AJRsin(o, - 0) + 02 sin(/ - 20)]
0/6
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+ -- t sin(-O - B) - A sin(O' - 20)], (12)
1/"ro

__ _ - 0.o,, [A2 sin, - 20k sin(O - B) + ,2 sin(b - 20)1

e UJ -

- -[kRsin(O - B) - A sin(O - 20)], (13)

57 Y/=Yo . - - [.Rcos(O/, -B)- ,0cos(/ - 20)], (14)

where C = z/L is the distance along the cavity scaled to the cavity length, R =

p 21R/2a and p = p21p/2a are the scaled guiding-center radius and gyroradius, re-

spectively, u.L = v./v~o and u. = v,/v,0 are the components of the electron velocity

scaled to the z component of the velocity at the entrance to the output cavity, V,0,

io = vo/c, bo = JeIBoL/ 7 omcvo is the scaled strength of the guide magnetic field,

70 is the relativistic factor at the entrance to the cavity, Eo(t) = iiEo(t)I exp[it(t)]

defines the phase P(t) of the rf field, e = IeEoIL/-fomcvo is the scaled strength of

the rf electric field and

= (wL/,,o) oJ dC'/-u.(C') -- 8 - 20o. (15)

Figure 2 indicates the definition of the angle 0 = 4, - E + 7r/2 in terms of the

guiding center angle 9 and gyroangle C'. These angles rotate at the drive frequency

(w/2) such that at the injection point to the cavity 0 does not vary with time; i.e.,

)(C,,to) = 0o + wto/2, *(C,to) = i(() + wto/2, where 00 is a constant and 4,(()

describes the variation of the gyroangle along the cavity.

When integrating the equations of motion, Eqs. (10)-(15), along the cavity, the

rf field is taken to be a constant. This is a consequence of the assumption that the
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temporal ,•volution of the rf r.mplitude, Eo(t), takes place on a time-scale that is

mu-' ionger than the electron transit time (: L/v.) through the cavity."s0 Hence,

the use of partial derivatives in Eqs. (12)-(14).

To complete the set of governing equations, it is necessary to recast the wave

equation, Eq. (5), in scaled form. We are interested in a system that is phase

locked by a prebunched electron beam.1' It is assumed that the prebunched beam

induces an rf field in the cavity at a frequency w = ckc + Aw, where Aw is the

frequency shift with respect to the cold cavity frequency. Intrcducing the cavity

quality factor, Q, into Eq. (5), and making use of the small argument expansion of

the Bessel function, the wave equation reduces to

+ e = if' dC [k sin, - 2,3RsinC@ - 0) + •2 sin(, - 20)], (16)
S~0'

e (A --) = j dCl R2cos,- 2,3Rcos(# -0) +,'cos(b- 20)], (17)

where I = IQL/I{IAkcaJ,(pn)] 2} is the scaled beam current, IA = (mcs/Iej)7o/3,o

is the Alfvin current, r" = ckct/Q is the scaled time and AC- = QAwl/ck, is the

scaled frequency mismatch. It is important to note that the integration over the

entry time to in Eq. (5) can be trivially performed and does not appear in Eqs.

(16) and (17). This is due to the special nature of the magnicon, in which electrons

enter the output cavity prebunched, and also due to our assumption that there

is no spread in the initial transverse coordinates or momenta. Thus, to study the

complete evolution of the system, it is only necessary to study the passage of a single

electron through the cavity. This is the basis of the simulation results presented in

Secs. III and IV. We shall address the issue of non-ideal beam effects in Secs. V.

8



The efficiency is defined as q = (7Yo - 7)/(70 - 1), where 7Y is the relativistic

factor at the cavity exit. Making use of Eqs. (12), (13) and (16), it follows that, in

steady state,

7 2(70-1) (18)S=2Cyo - 1) "l)

It should be remarked that the expression in Eq. (18) is simply a restatement of

the balance between the power extracted from the electron beam and the power

dissipated in the finite-Q output cavity.

In studying the efficiency of conversion of electron energy into rf energy as an

electron traverses the output cavity, it is useful to define the detuning, A, that

measures the deviation of the gyrofrequency from the rf frequency:

A- = WC) -. (19)

In common with the gyrotron, for zero detuning the efficiency should be small and

significant conversion will be achieved only for positive detuning.12 An estimate for

the optimum detuning may be obtained by choosing the magnitude of the guide

field so as to maintain gyroresonance on the average, assuming that the electrons

are brought to a complete rest at the end of the interaction. That is, B0• =

(m rAc/Ie)(7o + 1)/2. Making use of Eq. (19), the optimum detuning, A*'t , is given

by

A,, = (wlc)L -o - 1
,OA 27o (20)

9



III. Single-Electron Steady-State Simulation; Re-
duced Equations

The purpose of this section is to present steady-state simulation results obtained

from numerical solution of the reduced equations derived in the previous section.

Neglecting guiding-center drifts, Eqs. (12)-(17), with 8/0" set equal to zero, consti-

tute a simplified set of equations that can be solved to rapidly scan the parameter

space. Since these equations are expressed in scaled form, the simulation results

may be used to obtain point designs for a variety of physical systems.

Equations (10) and (11) represent the drift of the electron guiding-center. The

right-hard sides of Eqs. (10) and (11) are on the order of 10 % or less for the

examples described in detail here. This, along with the close agreement between

steady-state simulation results based on the reduced equations, and those based on

the full Lorentz equations in Sec. IV, justifies the neglect of guiding-center drifts.

All the simulation results in this paper assume that on entering the output

cavity, the guiding center of an electron is located off the cavity axis at a distance

equal to the gyroradius. This assumption is roughly borne out by our previous

investigation of the electron beam as it is spun up in the deflection cavities.6

The input parameters for the simulation are the beam energy at injection, the

scaled cavity length, IcL, and the detuning, A. Equation (20) is used to obtain

an order-of-magnitude estimate for the detuning that leads to high efficiency. The

angle 0, which is defined following Eq. (15) and in Fig. 2, is related to the gyroangle

and the guiding-center angle at the entrance to the cavity. This angle is also an

10



input parameter, being determined in part by the length of the drift tube leading

to the output cavity. For a given value of the scaled electric field, c, the scaled

current, i, and the efficiency are determined from Eqs. (16) and (18), respectively.

The plots presented in this section are obtained by scanning over all rf phase values,

-7r _• P < 7r, to determine the mazimum efficiency and the corresponding values of

the scaled frequency shift, the scaled current, and the rf phase. To leading order,

the approximation w .• ck, is employed in Eq. (15) and the frequency shift is then

simply obtained from Eq. (17). The last input parameter is the initial beam a.

Two examples will be discussed in detail, corresponding to the initial values a = 1

and a = 1.5.

Case (i) : a = 1

Figure 3 shows the results of the single-particle, steady-state simulation of the

reduced equations for a = 1. The parameters for this simulation are listed in

Table I, the three different detunings corresponding to the three curves in each

plot. Figures 3(a), (b), (c), and (d) show the efficiency, ti, the scaled current, I, the

scaled frequency shift, Aa, and Oo, respectively. The latter is the value of the phase

angle 4i at the entrance to the cavity. From Eq. (15), it follows that &o = -0 - 2O0,

thus relating Fig. 3(d) to the rf phase, f6. The abscissa in each plot is the scaled

electric field.

On examining Fig. 3, it is interesting to note that significant conversion effi-

ciency (> 50%) may be obtained with a beam a as small as 1. It is also interesting

to note the discontinuity in some of the curves at high values of scaled electric field.

11



This discontinuity results from a new local efficiency maximum (as a function of

phase) becoming the global maximum. (Our plots of mazimum efficiency as a func-

tion of electric field do not reveal the variation of the efficiency with rf phase; see

Ref. 10.)

It should be noted that the existence of steady-state solutions does not guarantee

their accessibility or their stability in an experiment that must grow from rf noise.

In order to investigate the accessibility of the high-efficiency solutions that the

scanning code locates, we will make use of a time-dependent code, as discussed in

Sec. IV.

Case (ii) : a = 1.5

Figure 4 shows the results of the single-particle, steady-state simulation of the

reduced equations for a = 1.5. The parameters for this simulation are listed in

Table IIH, the three different detunings corresponding to the three curves in each

plot. Figures 4(a), (b), (c) and (d) show the efficiency, 71, the scaled current, i, the

scaled frequency shift, Ads, and Oo, respectively. The general behavior of the plots

is similar to that in Fig. 3, although no discontinuity is apparent in this case. Note

that, as expected, the efficiency can be quite high, reaching up to 70 % for the case

with A = 5.788.

12



IV. Single-Electron Time-Dependent Simulation;
Maxwell-Lorentz Equations

In See. III we presented a panoramic view of the magnicon output cavity based

on the highly simplified equations derived in Sec. II. Figures 3 and 4 permit

one to design an output cavity by translating the scaled variables according to the

constraints of any particular experiment.

It is pointed out in Sec. HI that the maximum efficiency steady-state pre-

dicted by a time-independent code may not be accessible or stable in an experiment

in which the fields build up from noise. To address this issue one can employ a

time-dependent code to determine which one of the optimum-efficiency final states

indicated in Figs. 3 and 4 are true steady states of the system. The time-dependent

simulation results presented here are obtained from the full set of Maxwell-Lorentz

equations, Eqs. (5)-(8), following the motion of a single electron through the cavity

and studying the build-up of the rf field over a much longer time scale.

The parameters for the time-dependent simulation are chosen by locating a

high efficiency point on the solid curve in Fig. 3 or Fig. 4, and reading off the

corresponding value for the scaled current, and the frequency shift. An important

criterion in choosing an operating point is to minimize the electric field, consistent

with an acceptable efficiency, in order to avoid breakdown problems. In the exam-

ples considered in this paper, the maximum tolerable electric field is taken to be

S300 kV/cm. A further constraint on the parameters relates to the length of the

cavity. Conservation of canonical momentum, Eq. (9), implies that the kinetic z-

13



momentum, p, = ymv,, can vary along the cavity. We find that there is an optimal

cavity length for which the efficiency is a maximum and p. is a minimum as the

electron exits the cavity. This point will be clarified presently. The current I to be

used in the time-dependent code is determined by taking a reasonable value for the

cavity quality factor, Q (: 1000). The choice for the cavity length and the detuning

determine the value of the guide field through Eq. (19). Having chosen the param-

eters, the time-dependent code is used to search for the maximum efffriency by

fine-tuning the frequency shift around the value determined from Fig. 3(c) or Fig.

4(c). It must be emphasized that the time-dependent simulation results are based

on the full, unapproximated set of Maxwell-Lorentz equations and may therefore

differ to some extent from those based on the reduced equations of motion.

Case (i): a = 1

Table III lists the parameters for the time-dependent simulation of the case with

initial beam a = 1, A = 3.776 and i = 6.5. Figures 5(a), (b), and (c) show plots

of the electric field amplitude, the rf phase, and the efficiency as functions of time.

Figure 5 shows that the system settles into a steady state after a transient that lasts

;, 60 ns. Figure 5(a) shows that the electric field builds up to about 305 kV/cm,

Fig. 5(b) shows that the phase settles to an asymptotic value 1.1 rad, and Fig. 5(c)

shows the final efficiency in this field is about 52 %.

Figures 6 (a), (b), and (c) show plots of the axial momentum (normalized to

its initial value), efficiency, and a for an electron traversing the output cavity in

the final steady-state field. The modulation of the electron momentum, p,, is seen

14



to be correlated with the modulation on the efficiency curve. The scale-length for

the modulation is ; 2w'./k,. The length of the cavity has been chosen to be 4.75

cm so that, on exiting the cavity, p, is a minimum, and therefore the efficiency

is a maximum. In this sense, it appears that there is an optimal length for the

output cavity, which may be fine tuned to obtain the maximum efficiency. Figure

6(c) shows that the value of a declines as the electron spins down on traversing the

cavity.

In terms of the scaled variables, the final state of the time-dependent code is

compared with the corresponding point on Fig. 3 in Table IV. This table shows

dose agreement between the results from the steady-state simulation (labeled SSS)

of reduced equations and the time-dependent simulation (labeled TDS) of the full

Maxwell-Lorentz equations.

It must be pointed out that the steady-state simulations are deficient in a very

important respect. Namely, the questions of accessibility and stability of the pre-

dicted final states of the cavity, shown in Fig. 3, remain unresolved. As a case in

point, we compare in Table V the results of the time-dependent and steady-state

codes at the point at which the scaled current I = 17.13 and the detuning A = 4.776,

which lies at the extreme right of Fig. 3 on the dotted curve, and ostensibly corre-

sponds to the highest efficiency. Examination of Table V, however, reveals that for

this point the time-dependent code asymptotes to a final state with a much smaller

efficiency. This example highlights the fact that not all of the optimum-efficiency

states in Fig. 3, or Fig. 4, are accessible and stable final states of the rf field that

15



is built up from noise in the output cavity.

Case (ii): a = 1.5

Table VI lists the parameters for the time-dependent simulation of the case with

initial beam a = 1.5, A = 4.788 and I = 6.75. Figures 7(a), (b) and (c) show plots

of the electric field amplitude, the rf phase and the efficiency as functions of time.

This figure shows that the system settles into a steady state after a transient that

lasts - 25 ns. Figure 7(a) shows that the electric field builds up to about 230

kV/cm, Fig. 7(b) shows that the phase settles to an asymptotic value -1.2 rad, and

Fig. 7(c) shows the final efficiency in this field is about 63 %.

Figures 8(a), (b) and (c) show plots of the axial momentum (normalized to its

initial value), efficiency, and a for an electron traversing the output cavity in the

final steady-state field. The length of the cavity has been chosen to be 6.2 cm so that

p, is a minimum at the end of the cavity and therefore the efficiency is a maximum.

Figure 8(c) shows that the electron spins down on traversing cavity, although not

to the same extent as that in Case (i).

In terms of the scaled variables, the final state of the time-dependent code is

compared with the corresponding point on Fig. 4 in Table VII. Examination of Table

VII shows close agreement between the results from the steady-state simulation of

reduced equations and the time-dependent simulation of the full Maxwell-Lorentz

equations. A comparison has also been made between the simulations for i = 10.9

on the solid curve in Fig. 4; close agreement between the results is obtained.
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V. Multi-Electron Steady-State Simulation; Lorentz
Equations

On the basis of the single-electron simulation of the preceding sections, point designs

for operation of a magnicon output cavity, with a = 1 or a = 1.5, have been ob-

tained. The purpose of this section is to assess the role of beam quality, as measured

by spreads in the input parameters of the beam, on the efficiency. The numerical

results presented in this section are obtained by solving the Lorentz equations of

motion for a collection of electrons that represent spreads in the initial values of a,

the guiding center radius, R, or -t. In all cases, the electron distribution is taken to

be a "top-hat", with initially uniform loading of the electrons. This suffices to give

an order-of-magnitude estimate of the effect of beam quality on the efficiency.

The parameters for the multi-electron, steady-state simulation are listed in Ta-

bles III and VI. The asymptotic rf phase obtained from the time-dependent simula-

tion is used as an input parameter to the steady-state code. The electron equations

of motion are integrated along the cavity for several field amplitudes to pin-point

the rf steady-state that is in power balance with the given electron current. In the

figures, the spreads are given in terms of the root-mean-square (rms) deviation from

the mean of the corresponding quantity. The abscissa in the figures represent the

ratio of the rms to the mean value, expressed as a percentage.

Before proceeding, it is important to remark on a basic premise of the steady-

state simulation results of this section. As the spread in a beam parameter increases

from zero, the rf field at which power balance is obtained varies. For a sufficiently
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large value of the spread, however, there is, in some cases, a sudden jump in the

rf field amplitude required for power balance. In the figures to be described, the

maximum value of the spread is limited to lie below the point at which the sudden

jump takes place. Nevertheless, it cannot be guaranteed that a multi-electron,

time-dependent code would lead to results identical to those presented here.

Case (i): a = I

Figures 9 (a), (b), and (c) show the decline in the efficiency due to increasing

spreads in a, guiding center radius, R, and 7, respectively. The rapid decrease of

efficiency with energy spread is specially noteworthy. Obviously this implies that

the design of the deflection system must be particularly cognizant of this sensitive

dependence on energy spread.

Case (ii): a = 1.5

Figures 10 (a), (b), and (c) show the decline in the efficiency due to increasing

spreads in a, guiding center radius, R, and 7, respectively. Once again, one finds

that the optimum efficiency is extremely sensitive to a spread in y. Additionally,

comparison of Figs. 9 and 10 shows that the beam with the higher a is relatively

more sensitive to spreads in the beam parameters.
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VI. Summary and Conclusions

The electron-wave interaction in the output cavity of a frequency-doubling, magnetic-

field-immersed magnicon has been analyzed in a series of simulation studies. In this

presentation the output cavity is considered as an entity that is separate from the

deflection system, with the electron beam parameters corresponding to what is

expected on the basis of our earlier studies of the deflection system.'

Single-electron, steady-state simulation of reduced equations of motion were

used to rapidly scan the parameter space and locate a desirable operating point. A

single-electron, time-dependent code was then employed to ensure that the chosen

final state was an accessible and stable operating point of an amplifier wherein the

rf grew from noise. Finally, a multi-electron, steady-state code was used to study

the sensitivity of the point design to spreads in the beam parameters.

In conclusion, it is useful to recall the salient points of this work. First, as

indicated in Figs. 6 and 8, for an ideal beam, it is possible to choose the cavity

length so as to convert not only the transverse momentum but also part of the axial

momentum into rf field energy. Second, based on the runs made with Lhe time-

dependent code, we have found that some of the final states determined by the

steady-state code are accessible and stable, and some are not. Third, an efficient

(> 50%) final state with a = 1 is achievable. Finally, the efficiency of the output

cavity is most sensitive to energy spread on the beam.
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Table captions

Table I: Parameters for steady-state simulation of a magnicon amplifier output cavity

for three detunings. Initial beam a = 1.

Table IL: Parameters for steady-state simulation of a magnicon amplifier output cavity

for three detunings. Initial beam a = 1.5.

Table III: Parameters for time-dependent simulation of an X-band magnicon amplifier

output cavity. Initial beam a = 1.

Table IV: Comparison of single-particle time-dependent simulation (TDS) and single-

particle steady-state simulation (SSS) of reduced equations. Beam a - 1,

detuning A = 3.776 and scaled current I = 6.5.

Table V: Comparison of single-particle time-dependent simulation (TDS) and single-

particle steady-state simulation (SSS) of reduced equations. Beam a 1,

detuning A = 4.776 and scaled current I = 17.13.

Table VI: Parameters for time-dependent simulation of an X-band magnicon amplifier

output cavity. Initial beam a = 1.5

Table VII: Comparison of single-particle time-dependent simulation (TDS) and single-

particle steady-state simulation (SSS) of reduced equations. Beam a = 1.5,

detuning A = 4.788 and scaled current I = 6.75.
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Table I
Voltage 500 kV
kL 11.37 cm
Beama 1
Detuning A, 2.776
Detuning A2 3.776
Detuning A3 4.776
o ir/2
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Table II
Voltage 500 kV
kjL 14.85 cm
Beam a 1.5
Detuning A1 3.788
Detuning A 2 4.788

Detuning A 3 5.788

e 7'
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Table III
Frequency 11.43 GHz
Voltage 500 kV
Current 1 180.1 A

Cavity Radius 2.145 cm
Cavity Length 4.75 cm
Cavity Quality Factor Q 200
Beam a 1
Magnetic Field Bo 6.455 kG
Detuning A 3.776
Gyroangle t 0
Guiding Center Radius R 3.2 mm
Frequency Shift Aw/27r 6 MHz
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Table IV
111 TDS SSS

S2.34 2.28
AJ 0.11 0.12
"-Ii 1 -1.1 -0.9
?7 151.9 % 48.4 %
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Table V
S ITDSl sss]

c 0.7 4
AC; 0.475 0.475
-,0 2.9 -1.7
s/ 1.8% 57.6%
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Table VI
Frequency 11.4138 GHz
Voltage 500 kV
Current I 172 A
Cavity Radius 2.145 cm
Cavity Length 6.2 cm
Cavity Quality Factor Q 130
Beam a 1.5
Magnetic Field Bo 6.85 kG
Detuning A 4.788
Gyroangle -t 7r/2
Guiding Center Radius R 3.5 m
.Frequency Shift Aw/27r -10.2 MHz
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Table VII
[ll TDS SSS]

S2.95 2.9

A&o -0.12 -0.12
-/9 1.2 1.2
77 63% 60.6%
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(0/2

E

Figure 1: TM210 mode pattern in magnicon output cavity. Mode pattern rotates az-

imuthally at drive frequency, w/2. Electric field is shown by "+" and "*" and

magnetic field is indicated by solid curves.
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-.L.

0

0

Figure 2: Projection of gyro-orbit onto transverse plane. Electron is at (Z,y) and guid-

ing center is at (X, Y). (R, e) denotes guiding center radius and angle, and

(p, I) denotes gyroradius and gyroangle. Angle 0 = - ) + 7r/2 is fixed for

electrons entering output cavity.
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Figure 3: Results from single-electron, steady-state simulation of reduced equations for

initial beam a - 1 and three detunings, At = 2.776 --- -), A 2 = 3.776 (-),

A 3 = 4.776 (.). (a) Efficiency, 71; (b) Scaled current, i; (c) Scaled frequency

shift, ACa; (d) 00. Abscissa is scaled electric field, e.
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Figure 5: Results from single-electron, time-dependent simulation of X-band magnicon

with initial beam a = 1 and detuning A = 3.776. (a) Electric field amplitude,

lEoJ" (b) RF phase, -/3; (c) Efficiency, -q. Abscissa is time.

36



1.2

1.0o

N 0.8

"0.6

0.4

0.2

50
(b)

25

01
1.0 . .

(C)

05 0.5

0 . I *

0 1 2 3 4 5

Z (cm)

Figure 6: Results from single-electron, time-dependent simulation of X-band magnicon

with initial beam a = 1 and detuning A = 3.776. (a) Axial kinetic momentum

normalized to initial value, pz/pzo; (b) Efficiency, 71; (c) a. Abscissa is distance

along cavity. These plots correspond to motion of an electron through cavity

in final steady state.
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Figure 7: Results from single-electron, time-dependent simulation of X-band magnicon

with initial beam a = 1.5 and detuning A = 4.788. (a) Electric field ampli-

tude, JEoj; (b) RF phase, -#; (c) Efficiency, q/. Abscissa is time.
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Figure 8: Results from single.-electron, time-dependent simulation of X-band magnicon

with initial beam a = 1.5 and detuning A = 4.788. (a) Axial kinetic mo-

mentum normalized to initial value, p,/po; (b) Efficiency, 17; (c) a. Abscissa

is distance along cavity. These plots correspond to motion of an electron

through cavity in final steady state.
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Figure 9: Results from multi-electron, steady-state simulation with initial beam a = 1.

Efficiency versus relative rms deviations : (a) < (a- < a >)2 >1/2 / < a >,

(b) < (R- < R >)2 >1/2 / < R >, (c) < (-7- <7 >)2 >1/2 / <7>. Here,

<> indicates an average over electron distribution.
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Figure 10: Results from multi-electron, steady-state simulation with initial beam a = 1.5.

Efficiency versus relative rms deviations : (a) < (a- < a >)2 >/l / < a >,
(6) < (R- < R, >)2 >'/2 / < R >, (C) < (-Y- < -1 >)3 >'/2 / < -f >. Here,

<> indicates an average over electron distribution.

41


